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Quantification of cross correlations in complex spatiotemporal systems
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We propose a design of the equal time correlation matrix suitable for the analysis of multivariate time series
with ill-defined phases. We present the cross-correlation analysis of model data sets taken from coupled
stochastic oscillators and compare the concept with the results obtained from a conventional correlation matrix
analysis. We show that the concept provides a higher sensitivity combined with a better statistical significance

when quantifying weak cross correlations.
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I. INTRODUCTION

During the last decade, analysis of the equal time corre-
lation matrix has become a prominent tool to detect and clas-
sify correlations in highly irregular multivariate data sets
[1-3]. In [4] it was shown that genuine correlations are im-
printed in the spectrum of the eigenvalues and eigenvectors
of the correlation matrix via level repulsion at the edges of
the spectrum. By this mechanism a separation of the relevant
information from statistical fluctuations can be achieved.
While the central part of the spectrum is governed by ran-
dom correlations, analysis of the largest and smallest eigen-
values and their corresponding eigenvectors yields detailed
information about the correlation structure of the data set.
The results proved particularly valuable for the detection of
weak correlations in data sets with strong noise contamina-
tion. However, as the standard cross-correlation coefficient
essentially compares the phases of oscillations it remains un-
clear whether the correlation matrix formalism can be ap-
plied successfully to data with ill-defined phases.

In the present paper we suggest a design of the correlation
matrix tailored to the special requirements of stochastic time
series with ill-defined phases like those obtained in various
biological systems. Their common characteristic is the occur-
rence of sudden outbursts of activity from a more or less
uniform baseline. To account for this feature we calculate the
correlation coefficients from amplitude-weighted conditional
probabilities of the bursts. Comparing the results with those
obtained from the conventionally constructed correlation ma-
trix we provide evidence that the design yields higher sensi-
tivity and statistically more significant information about
spatial correlations.

Data of spatiotemporal bursting are widespread in excit-
able biological and biochemical systems. Classical examples
are provided by groups of electrically bursting neurons in
substructures of brains like the thalamus, e.g., Ref. [5], and
bursting beta cells in the mammalian pancreas [6]. In addi-
tion, recently a great variety of new imaging techniques al-
low to record spatiotemporal dynamics of both excitable and
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nonexcitable biochemical systems. A prominent representa-
tive is the fluorescence-based measurement of cytosolic cal-
cium in living tissue, e.g., the liver, where irregular patterns
associated with bursting in single cells were observed [7,8].
For the latter, a role of deterministic chaos in the generation
of the irregularity has been proposed [9] but more recently
detailed studies have emphasized stochastic fluctuations due
to the small particle numbers involved [10]. As the quantifi-
cation of correlations is important for the interpretation of
the corresponding spatiotemporal patterns in both excitable
and nonexcitable systems, we elaborated a method of analy-
sis for such irregular multivariate time series.

II. CORRELATION MATRICES

The conventional equal time correlation matrix is con-
structed over a stationary time window 7, (k=1,...,T) of a
multivariate dataset Z,(t;) (i=1,...,M) where M is the num-
ber of time series. 7, the number of data points in the time
window, should be considerably larger than M. To provide a
well-defined scale for all correlation coefficients, the data
points of the chosen time window 7 are normalized,

Z(ty) —<Z;)
a; ’

Z(1) = (1)
where (Z;) and o; are the average amplitude and the standard
deviation, respectively, both calculated for the time window
of length T. The equal time correlation matrix C [11] can
then be constructed as

1 ~ -
Cij= ;g Z{t)Z(t,). (2)

Due to the normalization (1) all entries of matrix (2) vary
between plus and minus one depending in whether correla-
tions or anticorrelations are present. All diagonal elements
are equal to 1 because each signal is perfectly autocorrelated
(zero lag). In consequence, the trace of the correlation matrix
is given by Tr(C)=3 C;==M \; where \; (i=1,...,M) de-
note the eigenvalues of (2). By this construction, the mea-
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For cases however, where the time series lack smooth
continuous oscillations, a method that quantifies phase-
shape-correlations like the correlation matrix formalism [4]
may not be the optimal tool of analysis. For instance, sys-
tems like the biochemical oscillators described below pro-
duce time series that are composed of a nonoscillatory base-
line interrupted by sudden bursts of irregular shape. In this
case the main question might be whether the times of occur-
rence and the amplitudes of the bursts in different signals are
correlated. To answer this question we modify the design of
the correlation matrix.

Let P; be the probability to find a finite amplitude of a
burst at time ¢ of time series Z(#), and let P;; denote the
conditional probability to find a nonzero burst amplitude si-
multaneously in time series Z; and Z;. Hence, if both time

J

series are uncorrelated P;; factorize P;;=P;P; on the average.

To take the magnitude of the bursts into account we define
a matrix A, the elements of which are the amplitude
weighted conditional probabilities,
T
|13 20050 o

T (X2

ij

where Ta=TP'%P‘f is the arithmetic average over the number
of data points where the signals Z(t,) are nonzero and (Z%) is
the average power of time series Z. Thus, A;;=A;, as in the
case of the conventional correlation matrix (2). The diagonal
elements A;; are equal to one and hence the trace of matrix A
is equal to the number of time series M: Tr(A):Ef;IlA,-i
=3M A;=M where A; (i=1,...,M) denote the eigenvalues
of matrix A.

If time series i and j are noncorrelated the value Aj;
=A;A; is equal to the amount of random coincidences of
finite amplitudes of the signals with

1 < Z(t)
l‘ = ”= /— .
VTP iz \(Z7)

(4)

The correlation coefficients of both C;; and A;; appear to be
dominated by random entries and further analysis is required
to extract quantitative information about genuine spatiotem-
poral correlations pattern. The main difference to the conven-
tional correlation matrix (2) is that for data sets showing
bursts with positive amplitudes and a zero baseline all non-
diagonal elements of matrix A are positive by definition,
A;>0.

III. TEST SYSTEM

In this paper we use a simple model of linearly coupled
bursting oscillators to generate artificial multivariate time se-
ries.

An individual oscillator is represented by a system of
three ordinary differential equations which describes the
temporal evolution of three concentrations. The model is de-
scribed in Ref. [9] and consists of the following equations:

ax(t) XY Xz
I =k1 +k2X—k3— —ks—,
dt X+ky X+ kg
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dY(1) Y

=k X —kg——
dt ! 8Y+k9

s

dZ(1) Z
dr =kioX kllZ+k12—FZ(XsZ)~ (5)
Originally the model was derived as a simplification of a
more realistic model for the bursting calcium dynamics in
liver cells [9], but it is used here to construct a representative
prototype of a bursting reaction-diffusion system.
To obtain a spatiotemporal system 10 of these cells were
coupled diffusively in the Z variable by adding the following
coupling term:

dz;
- = Fz(X,Z) - D(ZZI - Zi—l

dt _Zi+1)’ (6)

where D is the coupling constant and Z; denotes a concen-
tration in the ith cell. The first and tenth cell are connected
by periodic boundary conditions to yield a ring of identical
oscillators.

In order to account for low particle numbers in the living
cell, Eq. (5) together with Eq. (6) was stochastically simu-
lated using the Gillespie algorithm [12] in the Copasi simu-
lation software [13]. This stochastic simulation introduces
intrinsic, particle number dependent noise to the dynamics of
the deterministic model. In Fig. 1 we show representative
time series of two Z-variables of our test system. There are
occasional bursts occurring in only one of the signals (i.e., at
270-290 and 480-490 time units), bursts in both signals
which occur almost simultaneously with approximately the
same amplitudes (i.e., at 50-70 time units), and bursts which
approximately coincide in time but not in amplitude (i.e., at
370-380 time units).

Figure 1(b) shows a space-time plot of 10 uncoupled units
(D=0) and Fig. 1(c) a space-time plot of 10 weakly coupled
units (D=0.1) of the test system. All time series are charac-
terized by comparatively long segments of silence [Z,(1)=0,
coded in black] which are aperiodically interrupted by short
bursts of irregular shape (grey coded). No apparent relation-
ships are visible, neither between the bursts within one signal
nor between the activity of neighboring cells.

The question arises, whether there are mathematical tools
that are sensitive enough to detect even weak correlations in
data of the type shown in Fig. 1 on an objective scale and
hence distinguish them from random correlations and noise.
For instance, one might expect that the coupling in Fig. 1(c)
induces some kind of correlations when compared to the
uncoupled case of Fig. 1(b). Simultaneously one is always
interested in the statistical significance of the obtained re-
sults, an important aspect especially if only short data seg-
ments are available, a typical situation with experimental re-
cordings in biochemistry.

IV. RESULTS

At first we determine the average cross-correlation coef-
ficient ¢ and its standard deviation o, of the nondiagonal
elements of matrix C. Then we construct an M X M matrix
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FIG. 1. Stochastically simulate time series of the test system Eq.
(5) with Eq. (6). (Parameters, k;=0.212, k,=3.2, k;=4.88, ky
=1.18, k5=1.52, ks=0.19, k;=1.24, kg=32.24, k9=29.09, ki
=13.58, k=153, k;3=0.16, D=0.1, volume set to unity.) (a)
Concentration-time plot of variables Z4 (dashed line) and Zs (dotted
line) with D=0.1 [cf. Fig. 1(c)], (b) space-time plot of the 10 units
with D=0, (c) space-time plot of the 10 units with D=0.1.

with diagonal elements equal to unity and all nondiagonal
entries equal to c,

1
Cy=|c 1 c (7)

and two matrices with all nondiagonal entries based on o,
which provide a measure for the statistical error,

(8)

C.= ci% 1 c*

SN

1

In this manner, one eliminates the fluctuations within the
matrices but takes into account the statistical error in an ex-
plicit manner. It is straightforward to prove by induction that
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FIG. 2. Comparison of the conventional correlation matrix and
the amplitude weighted correlation matrix. One matrix for A and C
is constructed over a data segment of 150 000 sampling points.
Eigenvalues of C,, (solid line), C, (dashed line), and A, (solid
line), A, (dashed line) are drawn as a function of coupling constant
D. (a) Eigenvalues of A,, and A,, (b) amplification of (a) for the
range D=0 to 0.2, (c) eigenvalues of C,, and C,, (d) amplification
of (c) for the range D=0 to 0.2.

the characteristic polynomial of such matrices is given by

Py(N)=(1=XN=B)M-V[1-\+(M-1)B], 9)

where B is the value of the nondiagonal elements of (7) and
(8), respectively. These matrices have one large eigenvalue
N=1+(M-1)B and (M—1) degenerate small ones \,=1-B.
Applying the same procedure to (3) yields matrices A,, and
A_ with one large eigenvalue A;=1+(M—1)B and (M-1)
degenerate small eigenvalues A,=1-B, respectively. We
would like to remark, that the difference of the eigenvalues
from the matrices A,|\,,—\,_| or equivalently |[A,,—A,| is
essentially smaller than the difference of the smallest and
second largest eigenvalues of the full matrices C or A, re-
spectively. The average over the nondiagonal elements
(which is equivalent to a kind of spatial average) reduces the
amount of statistical fluctuations caused by the random cor-
relations.

Figure 2 shows the eigenvalues of matrices C,, and A,,
and their statistical error (eigenvalues of C, and A,) as a
function of the coupling strength D calculated for a time
segment of 7=150 000 sampling points in the test system.

Due to the normalization (1) the eigenvalues \; and A, of
matrix C,, are equal to 1 for D=0 because C;;=0 on the
average. With increasing coupling the degeneration is lifted
and the difference of the eigenvalues A (D)=N;(D)-\ (D)
increases continuously from zero to some maximum value.
In contrast, A,(D)=A;(D)-A D) of the eigenvalues of ma-
trix A,, is always finite, even for D=0. In this case, the
average nondiagonal elements of the matrix A are given by
the product of the average of the A; of Eq. (4), ie., (A;)
=(A;XA;)>0. However, as in the case of A.(D), the differ-
ence of the eigenvalues increases with increasing coupling
and hence a correlation measure can be defined based on the
differences of the eigenvalues for both cases:
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FIG. 3. Correlation measure C calculated from matrix A (solid
line) and matrix C (dashed line) as a function of coupling constant
D. One matrix for A and C is constructed over a data segment of
150 000 sampling points.

A(D) - A(D=0)
M-AD=0) "’

where A(D) denotes A, (D) and A (D), respectively. Theo-
retically, C(D) takes values between zero (no genuine corre-
lations present) and one (perfectly correlated state, i.e., iden-
tical time series). However, due to the stochastic nature of
the chosen data C(D) practically never reaches its possible
maximum value, not even for very large values of D.

Figure 3 shows a comparison of the correlation measure
C(D) calculated for the matrices C and A, respectively. In
both cases, C(D) increases continuously from 0 to some
maximum value. Nevertheless, except for D=0, C(D) always
assumes higher values when calculated from matrix A indi-
cating that the correlation matrix based on amplitude
weighted conditional probabilities is more sensitive to the
detection of correlations than the conventional correlation
matrix. This is especially true for the case of small couplings
where C(D) calculated for matrix A increases more rapidly
than in the case of matrix C. At D=0.2 the correlation mea-
sure C(D) calculated for matrix A is about three times the
value for the case of matrix C pointing to a higher sensitivity
of the concept. For large couplings the slopes of both curves
approach the same value, as should be expected.

In order to estimate the statistical significance of C(D) we
define a function

c(D) = (10)

R(D) = 2[A(D)E—(g§D =0)]

where 2(D)=[o)(D)+0,(D)] is the sum of the error bars of
the large and the small eigenvalue, i.e., o;(D)=|\,—\,_| and
O-S(D) = |)\s+ - )\x—| .

Thus, the statistical significance of the separation of ei-

genvalues and hence the correlation measure (10) can be
defined as

(11)

S(D) = exp[- R(D)]. (12)

If the statistical error 2(D)/2 is smaller than the average
separation of the eigenvalues A(D)—A(D=0), the value of
S(D) will be smaller than 1/e, otherwise it takes values be-
tween zero and 1/e. In Fig. 4 S(D) is shown as a function of
coupling strength D for correlation matrices (2) and (3). The
results demonstrate the superior performance of the correla-
tion measure calculated from matrix A. At D=0.2 the value
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FIG. 4. Statistical significance S of the correlation measure as a
function of the coupling D for the case of matrix A (solid line) and
C (dashed line). For comparison the value ¢! is drawn as a hori-
zontal solid line. The matrices are constructed over a data segment
of 150 000 sampling points.

of S(D) is about two orders of magnitude smaller in the case
of matrix A than for matrix C. In this way, S(D) provides an
objective criterion for the statistical significance of the de-
tected cross correlations.

The results presented so far were obtained for compara-
tively long stationary time series, which may not be a real-
istic assumption for some experiments. Therefore, in Fig. 5
we present the results for C(D) and S(D) in a case where
instead of 7=150 000 only 7=1000 data points (which cor-
responds to approximately 20 bursts) are taken into account
for the construction of the matrices C and A, respectively. In
contrary to the case of the long sequences, the curves are
obtained by averaging over 100 trials. Again, as seen particu-
larly from measure S(D), the performance of the method
using matrix A is significantly better than the approach based
on matrix C. Already at D=0.05 the value of S(D) for ma-
trix A crosses the critical value 1/e, whereas for matrix C
the same is true at D=0.45. The results in Fig. 5 demon-
strate the superior performance of the method based on ma-
trix A especially in the case of short, weakly correlated time
series.

In many situations not only the detection of correlations is
desired but also the the spatial distribution of dependencies is
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FIG. 5. Comparison of the correlation measure C (a) and the
statistical significance S (b) of the correlation matrices A (solid
line) and C (dashed line), respectively, as a function of the coupling
strength D. The matrices are constructed over a data segment of
1000 sampling points. The results are obtained by averaging over
100 trials.
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of interest. In Ref. [4] it was shown how to extract informa-
tion about the spatial properties of the correlation structure
by analyzing the eigenvectors of the correlation matrix. In
general, if K time series of an M-dimensional multivariate
data set are correlated, K eigenstates of the correlation matrix
repel. This repulsion occurs exclusively between states at the
edges of the spectrum, where the number of increasing states
at the upper end and decreasing states at the lower end of the
eigenvalue spectrum is determined by the specific structure
of the correlation pattern [4]. In order to check the perfor-
mance of the correlation matrix (3) in this respect, we per-
form an analysis of a data set retrieved from the test system
when only two of the 10 units are coupled with D >0. The
coupling between the remaining oscillators is set to zero. In
this situation, the eigenvector v, corresponding to the larg-
est eigenvalue A, of matrix A repels with the eigenvector v
corresponding to A, independently of which pair of the M
=10 signals is correlated.

In order to identify a subset of K<<M correlated signals of
an M-dimensional multivariate data set one must provide an
interpretation of the basis in which the matrix A is written.
Each column or row of matrix A (and matrix C, respec-
tively) represents the correlations between a particular signal
Z,(t) and all others. Hence, each basis vector represents the
mutual correlations measured in a particular time series.
Therefore, each of the components a; j=1,....M of an
eigenstate v; can be assigned to a specific time series Z;(r)
(the “channel basis” [3,4]).

The repulsion of states at the edges of the spectrum of
matrix A leads to a mixing of their components in a similar
manner as in interference processes of quantum states
[14,15]. In our case, the eigenvectors involved in this repul-
sion process collect significant contributions of those com-
ponents which belong to the correlated subspace [4], i.e., it is
expected that those components a;; of v, and v}, which be-
long to the two correlated signals should be larger than the
others. The magnitude of those a;; depend on the amount of
correlations and hence on the strength of the coupling be-
tween the units. Therefore, by investigating the structure of
the eigenvectors it is possible to determine which of the time
series are correlated.

In order to extract information about the spatial structure
of the correlation pattern, it is not convenient to analyze the
eigenvectors of the matrices A,, and A, because they reflect
a spatial average of the correlation. Instead one must inves-
tigate the properties of matrix A which do contain specific
information about the spatial distribution of the correlations.

Figure 6 shows the results for the eigenvector components
|a;;[* of matrix A when only unit 1 and 10 of the test system
are coupled with D=0.1. The results are obtained by averag-
ing over 500 matrices constructed from data segments of
length 7=15 000. The 95% confidence level is drawn with
dashed lines (note that the error given by the dashed lines
corresponds to a range of about four times the standard de-
viation assuming normal distribution for |aij 2). The figure
shows a comparatively large value for the first and last com-
ponents of the eigenvectors v, and v, corresponding to the
largest and smallest eigenvalue. The components of all other
eigenvectors are almost uniformly distributed. As an ex-
ample, the components of vy are drawn for comparison.
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FIG. 6. Eigenvector components from A calculated for 500 ma-
trices over a data segment of 15000 sampling points per matrix
when only two from 10 units of the test system are coupled with
D=0.1. (a) Components of the eigenvector v, corresponding to the
largest eigenvalue A, (b) components of Uy, and (c) components
of v;. Solid line, average value over 500 trials, dashed lines, 95%
confidence levels.

These results fit precisely to the interpretation given
above. The repelling states mix almost exclusively within the
coupled subspace of the M-dimensional configuration space.
Hence, the corresponding eigenstates show large values of
those aij|2 which correspond to the coupled units. Conse-
quently, the spatial structure of the coupling between the M
oscillators of the test system (and hence the induced correla-
tions) can be seen directly via the structure of the repelling
eigenstates.

In the given example the quality of the results can be
improved by averaging over the v, and v,y In Fig. 7 we
show the results of the average over the first and last com-
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<faal™> 0.2
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FIG. 7. Average over the first and tenth component of the eigen-
vectors corresponding to the largest and smallest eigenvalue of ma-
trix A as a function of the coupling strength D, calculated over a
data segment of 15000 sampling points when only two from
10 units of the test system are coupled. Solid line, average over the
first and tenth component; dashed line, average over the compo-
nents from 2 to 9, dashed-dotted line, 95% confidence levels.
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ponent as well as the average over the remaining components
as a function of the coupling strength. For each value of D an
ensemble of 500 matrices are calculated over a data segment
of 15000 sampling points. The 95% confidence level for
each of the averages is drawn with dashed lines.

For increasing coupling the average value of the compo-
nents 1 and 10 increases almost monotonically whereas the
average of components from 2 to 9 decreases. Simulta-
neously the statistical significance of the obtained results in-
creases with stronger coupling, i.e., the width of the confi-
dence interval gets smaller. Hence, the stronger the coupling
between the oscillating units, the stronger is the mixing of
the eigenstates within the correlated subspace and conse-
quently the larger is the magnitude of the components be-
longing to the time series of the correlated oscillators.

Therefore, if the coupling is strong enough the method
allows to identify the coupled units via the structure of the
largest and smallest eigenvectors. In general, for successful
identification it is true that the weaker the coupling the
longer is the required time segment for the construction of
the correlation matrix. This is especially true for time series
with a large noise component as in the present case.

V. CONCLUSIONS

In this paper we presented a design of the equal time
correlation matrix based on the probability to find simulta-
neously bursts of comparable amplitude in two time series of
a multivariate data set. We could show via direct comparison
that the performance of the formalism in Ref. [4] is superior
when the new correlation matrix is used. Especially for weak
relationships between the signals the correlation measure cal-
culated from matrix A is more sensitive with a higher statis-
tical significance than the results obtained with matrix C.
This is relevance for the evaluation of nonstationary and
comparatively short data sets which do not yield significant
quantitative information about spatial correlations when the
standard cross-correlation coefficients are evaluated. For
strong correlations as well as for continuously oscillating
systems the results obtained from both matrices are of com-
parable quality.

It turned out that by evaluating the difference of the ei-
genvalues of the matrices C,, and A,, the sensitivity for the
detection of the presence of correlations can be drastically
improved. The error bars given by the eigenvalues of the
matrices C, and A, are much smaller than the range between
the smallest and second largest eigenvalue of the full matri-
ces C or A, respectively.

Nevertheless, if for a given system not only the detection
of correlations but also the localization of correlated units is
of interest, the non-averaged correlation matrix must be con-
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sidered. Then the spatial correlation structure of the system is
imprinted in the structure of the eigenvectors corresponding
to the largest and smallest eigenvalues. However, for the
identification of the coupled units a better statistics is needed
which can be achieved by longer stationary time series.

Furthermore, in many experimental situation the case of
zero coupling (noncorrelated case) cannot be realized easily.
Hence, information about the value of A(D=0), needed for
the calculation of the correlation measure C(D), is not avail-
able directly. In this case, the uncorrelated case could be
simulated by creating surrogate data from the experimental
results. However, the usual random shuffling of partial
phases is not appropriate for data like those obtained from
the test system. Here, a random permutation and shifting of
the bursts seems to be the adequate strategy for the creation
of surrogates.

We believe that the method based on matrix A can be
successfully applied to a variety of bursting biochemical sys-
tems [7] and bursting media in general [5,6]. Since more and
more high-throughput techniques are developed in biology
measuring a multitude of different data for many time points,
e.g., metabolites or proteins in the cell, and it is often of
interest which concentrations correlate, we think that our
method will become applicable to more and more systems in
the future. In principal, the method should be also valuable
for the analysis of microarrays looking for coexpressed
genes. However, in this case there is a strong limitation on
the number of time points. Therefore, detailed investigations
to determine the lower limits for the number of time points
needed for the analysis should be done before application.

Another attractive application is the analysis of the highly
irregular dynamics of complex excitable systems like net-
works of firing or bursting neurons. Here, multivariate data
can be obtained from recordings of electrode arrays or by
application of voltage-dependent dyes. In this case an ampli-
tude threshold should be set in order to discriminate the
noisy basal state from the information-containing firing state.
Thereby one creates time series consisting of the spikes or
bursts separated by intervals of zeros similar to the output of
the simulation of the test system. The presented technique
based on the matrix A then provides information about cross
correlations between spiking activity of different neurons
and the presence of spatiotemporal correlations might be re-
lated to information-processing activity of the system.
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